Saturday, February 12, 2011

New inexpensive way to grow silicon microwires for sensors, batteries and solar cells


New inexpensive way to grow silicon microwires for sensors, batteries and solar cells

New way to grow microwires

Enlarge


Molten droplets of copper, at top, dissolve silicon out of a surrounding silicon-rich gas, and then the silicon precipitates out at the bottom of the drop to gradually build up a silicon microwire. This microscope image has had color added for clarity. Image courtesy of Tonio Buonassisi


Microwires made of silicon -- tiny wires with a thickness comparable to a human hair — have a wide range of possible uses, including the production of solar cells that can harvest much more sunlight for a given amount of material than a conventional solar cell made from a thin wafer of silicon crystal. Now researchers from MIT and Penn State have found a way of producing such wires in quantity in a highly controlled way that could be scaled up to an industrial-scale process, potentially leading to practical commercial applications.



Other ways of making such wires are already known, and prototypes of solar cells made from them have been produced by several researchers. But these methods have serious limitations, says Tonio Buonassisi, MIT professor of mechanical engineering and a co-author of a paper on the new work that was recently published online in the journal Small, and will soon appear in the print edition. Most require several extra manufacturing steps, provide little control over the exact sizes and spacing of the wires, and only work on flat surfaces. By contrast, the new process is simple yet allows precise control over the wire dimensions and spacing, and could theoretically be done on any kind of curved, 3-D surface.


Microwires are thought to be capable of reaching efficiencies close to those of conventional solar cells in converting sunlight to electricity, but because the wires are so tiny they would do so using only a small fraction of the amount of expensive silicon needed for the conventional cells, thus potentially achieving major reductions in cost.


In addition to microwires’ potential use in solar cells, other researchers have proposed ways such microscopic wires could be used to build new kinds of transistors and integrated circuits, as well as electrodes for advanced batteries and certain kinds of environmental monitoring devices. For any of these ideas to be practical, however, there must be an efficient, scalable manufacturing method.


The new method involves heating and intentionally contaminating the surface of a silicon wafer with copper, which diffuses into the silicon. Then, when the silicon slowly cools, the copper diffuses out to form droplets on the surface. Then, when it is placed in an atmosphere of silicon tetrachloride gas, silicon microwires begin to grow outward wherever there is a copper droplet on the surface. Silicon in the gas dissolves into these copper droplets, and then after reaching a sufficient concentration begins to precipitate out at the bottom of the droplet, onto the silicon surface below. This buildup of silicon gradually elongates to form microwires each only about 10 to 20 micrometers (millionths of a meter) across, growing up from the surface. The whole process can be carried out repeatedly on an industrial manufacturing scale, Buonassisi says, or even could potentially be adapted to a continuous process.


The spacing of the wires is controlled by textures created on the surface — tiny dimples can form centers for the copper droplets — but the size of the wires is controlled by the temperatures used for the diffusion stage of the process. Thus, unlike in other production methods, the size and spacing of the wires can be controlled independently of each other, Buonassisi says.


New way to grow microwires
Enlarge


This new technique for growing microwires can produce strands that are very long in relation to their diameter. The rounded ?cap? at the wire?s top is a droplet of molten copper, while the wire itself is pure silicon. Image courtesy of Tonio Buonassisi

The work done so far is just a proof of principle, he says, and more work remains to be done to find the best combinations of temperature profiles, copper concentrations and surface patterning for various applications, since the process allows for orders-of-magnitude differences in the size of the wires. For example, it remains to be determined what thickness and spacing of wires produces the most efficient solar cells. But this work demonstrates a potential for a kind of solar cell based on such wires that could significantly lower costs, both by allowing the use of lower grades of silicon (that is, less-highly refined), since the process of wire growth helps to purify the material, and by using much smaller amounts of it, since the tiny wires are made up of just a tiny fraction of the amount needed for conventional silicon crystal wafers. “This is still in a very early stage,” Buonassisi says, because in deciding on a configuration for such a solar cell “there are so many things to optimize.”

Michael Kelzenberg, a postdoctoral scholar at the California Institute of Technology who has spent the last five years doing research on silicon microwires, says that while others have used the copper-droplet technique for growing microwires, “What's really new here is the method of producing those liquid metal droplets.” While others have had to place the droplets of molten copper on the silicon plate, requiring extra processing steps, “Buonassisi and his colleagues have shown that metal can be diffused into the growth substrate beforehand, and through careful heating and cooling, the metal droplets will actually form on their own — with the correct position and size.”


Kelzenberg adds that his research group has recently demonstrated that silicon microwire solar cells can equal the efficiency of today’s typical commercial solar cells. “I think the greatest challenge remaining is to show that this technique is more cost-effective or otherwise beneficial than other catalyst metal production methods,” he says. But overall, he says, some version of silicon microwire technology “has the potential to enable dramatic cost reductions” of solar panels.


The paper was co-authored by Vidya Ganapati ’10, doctoral student David Fenning, postdoctoral fellow Mariana Bertoni, and research specialist Alexandria Fecych, all in MIT’s Department of Mechanical Engineering, and postdoctoral researcher Chito Kendrick and Professor Joan Redwing of Pennsylvania State University. The work was supported by the U.S. Department of Energy, the Chesonis Family Foundation and the National Science Foundation.



This story is republished courtesy of MIT News (http://web.mit.edu/newsoffice/), a popular site that covers news about MIT research, innovation and teaching.

New material enables 'information sorting' at the speed of light


New material enables 'information sorting' at the speed of light

New material enables 'information sorting' at the speed of light

Artistic impression of metamaterial structure consisting of gold nanorods illuminated by two interacting light beams. Courtesy of R. McCarron.


(PhysOrg.com) -- An international team of scientists led by King’s College London has taken a step closer towards developing optical components for super-fast computers and high-speed internet services of the future. This has the potential to revolutionise data processing speeds by transmitting information via light beams rather than electric currents.



The researchers are studying the science of ‘nanoplasmonic devices’ whose key components are tiny nanoscale metal structures, more than 1000 times smaller than the size of a human hair, that guide and direct light.


Information is routinely sorted and directed in different directions to allow computing, internet connections or telephone conversations to take place. At present, however, computers process information by encoding it in electric signals.


It would be much faster to process and transmit information in the form of light instead of electric signals, but until now, it has been difficult for the light beams to be ‘changed’, that is to interact with other beams of light, while travelling through a material, and this has held up progress.


The scientists have solved this by designing a new artificial material, which allows light beams to interact efficiently and change intensity, therefore allowing information to be sorted by beams of light at very high speeds. The structure of the tailor-made material is similar to a stack of nanoscale rods, along which light can travel and, most importantly, interact.


Professor Anatoly Zayats, in the Department of Physics at King’s, explains: ‘If we were able to control a flow of light in the same way as we control a flow of electrons in computer chips, a new generation of data processing machines could be built, which would be capable of dealing with huge amounts of information much faster than modern computers.


‘The new material we have developed, often called ‘metamaterial’, could be incorporated into existing electronic chips to improve their performance, or used to build completely new all-optical chips and therefore revolutionise data processing speeds.


‘While there are many challenges to overcome, we would anticipate that in the future this faster technology could be in our PCs, mobile phones, aeroplanes and cars, for example.’


Other members of the team involved in this latest research include Argonne National Laboratory in the USA; University of North Florida; University of Massachusetts at Lowell; and Queen’s University of Belfast in the UK.


The research is published in the journal Nature Nanotechnology.

Novel tailor-made nanoferroelectric from building blocks


Novel tailor-made nanoferroelectric from building blocks

Novel tailor-made nanoferroelectric from building blocks

Enlarge


Fig. An artificial superlattice assembled from perovskite nanosheets (A=Ca2Nb3O10, B=LaNb2O7). The success of growth of such well-controlled superlattices with a good interface quality enabled us to explore new properties of perovskite superlattices. By artificial structuring, the group found that the (LaNb2O7/Ca2Nb3O10) superlattice possesses a new form of interface coupling, which gives rise to ferroelectricity even at several nanometer thicknesses.


A research group at the Japan's National Institute for Materials Science have successfully developed a novel nanoferroelectric by a solution-based bottom-up nanotechnology.



A research group headed by MANA Scientist Dr. Minoru Osada and Principal Investigator Dr. Takayoshi Sasaki of the International Center for Materials Nanoarchitectonics at the National Institute for Materials Science successfully developed a novel nanoferroelectric by a solution-based bottom-up nanotechnology.


Ferroelectric materials are one of dielectrics that possess spontaneous and reversible electric dipole moments — an electric polarization remains after applying and removing an external electric field, from which ferroelectric materials can be worked as a nonvolatile memory, representing "0" in one orientation and "1" in the other. Ferroelectric memory (FeRAM) features high-speed access, high endurance in write mode, low power consumption, non-volatility, and excellent tamper resistance. It is therefore ideal memory for use in smart cards, as well as cellular phones and other devices. The continuous downscaling of microelectronic circuits combined with increasing interest in ferroelectric thin films for FeRAMs is drawing great attention to ferroelectric nanostructures / nanofilms. Until recently, it was technologically difficult to stabilize ferroelectricity on the nanoscale.


Seeking to develop a new nanoferroelectrics, this research group created a superlattice film based molecularly-thin oxide nanosheets as building blocks. The group synthesized two different perovskite nanosheets (Ca2Nb3O10, LaNb2O7), and fabricated an artificial superlattice by alternately stacking of two nanosheets via solution-based layer-by-layer assembly, in the same way that children play with building blocks. By artificial structuring, the group found that, in contrast to the paraelectric nature of Ca2Nb3O10 and LaNb2O7, the (LaNb2O7/Ca2Nb3O10) superlattice possesses a new form of interface coupling, which gives rise to ferroelectricity at room temperature. This artificial superlattice exhibited robust ferroelectric properties even at several nanometer thicknesses, which is the world’s thinnest level. This achievement has a great potential for the rational design and construction of nanoferroelectrics, and will also open a new route to the development of lead-free ferroelectric devices desirable for future electronic equipments.


The results was published in ACS Nano on November 23.